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Abstract

Rhizophagus irregularis, an arbuscular mycorrhizal fungus, and Bacillus amyloliquefaciens,

a bacterium, are microorganisms that promote plant growth. They associate with plant roots

and facilitate nutrient absorption by their hosts, increase resistance against pathogens

and pests, and regulate plant growth through phytohormones. In this study, eight local plant

species in Finland (Antennaria dioica, Campanula rotundifolia, Fragaria vesca, Geranium

sanguineum, Lotus corniculatus, Thymus serpyllum, Trifolium repens, and Viola tricolor)

were inoculated with R. irregularis and/or B. amyloliquefaciens in autoclaved substrates to

evaluate the plant growth−promoting effects of different plant/microbe combinations under

controlled conditions. The eight plant species were inoculated with R. irregularis, B. amyloli-

quefaciens, or both microbes or were not inoculated as a control. The impact of the

microbes on the plants was evaluated by measuring dry shoot weight, colonization rate by

the arbuscular mycorrhizal fungus, bacterial population density, and chlorophyll fluores-

cence using a plant phenotyping facility. Under dual inoculation conditions, B. amyloliquefa-

ciens acted as a “mycorrhiza helper bacterium” to facilitate arbuscular mycorrhizal fungus

colonization in all tested plants. In contrast, R. irregularis did not demonstrate reciprocal

facilitation of the population density of B. amyloliquefaciens. Dual inoculation with B. amyloli-

quefaciens and R. irregularis resulted in the greatest increase in shoot weight and photosyn-

thetic efficiency in T. repens and F. vesca.

Introduction

Countless microorganisms reside and propagate in the rhizosphere where plant roots and soil

meet. Some of the microbes have neutral or lethal effects on the growth and survival of plants,

whereas others support their host plants via various mechanisms [1]. Because of their plant
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growth−promoting attributes, some of the microorganisms are used as commercial soil addi-

tives. Rhizophagus irregularis (Schenck and Smith) (formerly Glomus intraradices) and Bacillus
amyloliquefaciens (Fukumoto) are among the most commonly applied plant growth−-

promoting microorganisms.

R. irregularis is an arbuscular mycorrhizal fungus (AMF) that is found in nearly all soil eco-

systems and types [2,3]. It colonizes plants by forming intraradical hyphae and arbuscules as

well as vesicles inside roots. Arbuscules are tree-like structures that function as carbohydrate/

mineral/lipids exchange systems between host plants and the fungus. Vesicles are oval struc-

tures that act as nutrient reservoirs and, in some cases, as propagules [4–7]. When the arbus-

cules and vesicles appear, the hyphae function as nutrient transportation ducts [2]. R.

irregularis facilitates plant growth by direct and indirect means, such as nutrient uptake and

transportation [8,9], water absorption [10], salinity resistance [11,12], heavy-metal detoxifica-

tion [13,14], and pathogen resistance [15,16].

B. amyloliquefaciens is a Gram-positive, spore-forming bacterium closely related to Bacillus
subtilis [17]. It was given its name because it produces α-amylase and protease [18]. B. amyloli-
quefaciens is attracted by root exudates and lives on root surfaces. Successful colonization and

effective plant growth promotion occur when a layer of bacterial cells, known as a biofilm, is

formed on the surface of seeds, roots, or root hairs, as it prevents competition by other micro-

organisms [19–21]. Similar to R. irregularis, B. amyloliquefaciens facilitates the growth of its

host plant in several ways: salt tolerance [22], drought tolerance [23], nutrient uptake [24,25],

and pathogen resistance [26–28].

The use of plant growth−promoting microorganisms has increased at a rate of 10% annu-

ally in crop production worldwide over the last decade [29]. In particular, they have the poten-

tial to be used in green roofs (rooftops covered with vegetation), which are especially desirable

in cities where they can provide multiple ecosystem services to urban residents, including miti-

gating air pollution, relieving the urban heat island effect, saving energy, and retaining storm-

water [30–35]. Green roof applications are, however, limited by three major challenges:

extreme weather conditions, the choice of suitable plants, and high installation and mainte-

nance costs [36,37]. McGuire et al. [38] found that green roof soils support microbial commu-

nities that are distinct from city park soils and suggested this may be due to differences in soil

depth, plant species, proximity to parks, and the conditions on the roofs. Studies have thus

been conducted on green roofs to manipulate soil microbial communities [39], study AMF

colonization patterns [40], and improve soil nutritional status by using AMF inoculum [41].

Nevertheless, more attention should be paid to microbe-plant interactions under green roof

conditions to understand how the microbial community functions and whether microbial

manipulation benefits green roof applications.

In 2012, a green roof experiment was conducted in Vantaa, Finland, led by the Fifth

Dimension Green Roof Research Group. R. irregularis and B. amyloliquefaciens were added

separately to the green roof plots to study microbial survival and growth. The preliminary find-

ings suggested that the density of B. amyloliquefaciens in the rhizosphere was likely to be

enhanced by R. irregularis co-inoculated in the soil. Interactions between AMF and bacteria

have been reported in the literature, and these interactions can be commensalistic as well as

amensalistic [42]. Mansfeld-Giese et al. [43] found that the presence of R. irregularis either

promoted or suppressed the population density for 14 bacterial species. In another study using

Medicago sativa (L.) as a host plant, co-inoculation with Glomus deserticola (Trappe, Bloss &

Menge) and Bacillus pumilus (Meyer & Gottheil) increased shoot biomass and root length

compared with inoculation with either of the two microbes alone [44]. Toro et al. [45] con-

cluded that co-inoculation with B. subtilis and R. irregularis significantly increased biomass

and nitrogen/phosphorous (N/P) accumulation in tissues of onion plants. If synergy between
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R. irregularis and B. amyloliquefaciens could be achieved in plants suitable to be grown on

green roofs, it would optimize ecosystem services provided by green roofs to urban areas via

plant growth enhancement.

In this study, we determined whether synergistic interactions occur between R. irregularis
and B. amyloliquefaciens by setting up greenhouse experiments under controlled conditions

using eight local plant species from Finland as hosts (Antennaria dioica, Campanula rotundifo-
lia, Fragaria vesca, Geranium sanguineum, Lotus corniculatus, Thymus serpyllum, Trifolium
repens, and Viola tricolor). A few of these plants, such as T. serpyllum, T. repens, and L. cronicu-
latus [46–48], are also stress resistant and hence potentially more suitable for green roofs. Four

treatments were conducted for each plant species: inoculation with (i) R. irregularis, (ii) B.

amyloliquefaciens, (iii) co-inoculation with both microbes, and (iv) no microbial amendment

(control). The aim was to find out which plant-microbe combinations promote the physiologi-

cal performance of plants. Shoot biomass and the photosynthetic efficiency were chosen as

indicators of physiological performance, as they directly reflect plant physiology and are rela-

tively easy to measure.

Materials and methods

Experimentation

Experiments were conducted in the Small Plant Unit of the National Plant Phenotyping Infra-

structure (NaPPI) on the Viikki campus, University of Helsinki, Finland [49] (https://www.

helsinki.fi/en/infrastructures/national-plant-phenotyping). NaPPI is an in-house facility that

conducts high-throughput and high-precision plant phenotyping. It consists of programmable

tools for weighing, watering, and imaging the plants—both for red-green-blue pictures (RGB

Camera) and chlorophyll fluorescence (Fluorecam). These tools allow comprehensive analysis

of plant growth and physiology. Light-emitting diode lamps were used to avoid heating the

plants by illumination.

Seed of the plant species were purchased from Suomen Niittysiemen (Jyväskylä, Finland)

and stored at 4˚C for 2 weeks before sowing. The inoculant products MYC4000 (4000 fungal

spores of R. irregularis strain DAOM 181602 per gram) and Rhizocell (>109 CFU endospores

of B. amyloliquefaciens strain FZB42 per gram) were provided by Lallemand Plant Care (Cas-

telmaurou, France). MYC4000 and Rhizocell are powdered products. They were dissolved in

distilled water according to the manufacturer’s instructions before being sprayed onto the

growth substrate.

Plant seeds were sown in autoclaved sand for germination. After 4 weeks, seedlings were

individually transplanted into plastic pots (8 × 8 × 8 cm; VWR, Center Valley, PA, USA) filled

with 450 cm3 autoclaved soil from a conifer forest (provided by Kekkilä Oy, Vantaa, Finland),

a soil volume that is typically used for rooting plants [50–53]. The small plant unit at NaPPI is

designed to fit only this particular pot size, and it is suitable for plants up to 50 cm in height.

The substrates used in this study were low in nutrients, and no fertilizer was applied to keep

the seedlings smaller and to more readily observe the effects of the inoculants on plant growth

[52,54,55]. A shallow soil depth was used, as is typical for green roofs. The soil properties were

pH 6.4; organic matter, 5.6%; soluble P, 2.2 mg/kg; and soluble N, 0.4 mg/kg. For each plant

species, 24 seedlings were divided into four treatments: six seedlings were inoculated with R.

irregularis (R), six seedlings with B. amyloliquefaciens (B), six seedlings were co-inoculated

with both microbes (R+B), and six seedlings remained as uninoculated controls. Altogether,

192 transplanted seedlings were maintained in the NaPPI facility for 7 weeks, during which

the day/night length was set to 16 h/8 h. Light intensity was 172 μmol m−2 s−1. Seedlings were

irrigated daily to maintain a water-holding capacity of 65% [56]. Two independent, repeated
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NaPPI experiments were conducted in July 2015 and June 2016. During the first experiment,

the NaPPI watering program was interrupted a few times.

Before sampling, each plant was measured for chlorophyll fluorescence activity with the

Fluorecam in the NaPPI to determine the photosystem II photochemical capacity. This was

calculated from the ratio of the variable fluorescence to the maximum chlorophyll fluorescence

(Fv/Fm), which reflects the photosynthetic efficiency of tested plants [57]. The optimal value is

0.83 for most plant species, and a value lower than that indicates poor plant growth [58]. Plant

shoots (including all aboveground biomass such as branches, leaves, and stems) were cut, des-

iccated at 70˚C in an oven for 48 h, and weighed to measure their dry biomass. Soil adhering

to roots was collected from six different places in each pot and transferred to screw cap tubes.

Each soil sample was mixed by vigorous shaking and stored at 4˚C. Roots were carefully

brushed and stored in 70% ethanol at 4˚C.

Detection of R. irregularis in root samples

The classical AMF detection method includes root staining, microscope slide preparation, and

AMF quantification [59]. After 7 weeks of cultivation in NaPPI, a root sample was collected

from each of three random plants for each species and treatment. Roots were washed and

stored in 70% ethanol until staining with Trypan Blue. The staining protocol was adjusted for

each plant species [60] (Table 1). In brief, the roots were first soaked and softened in KOH

solution, which made the staining process more effective. Then the roots were immersed in

1.5% hydrogen peroxide containing 5 ml/l ammonia (H2O2+NH3) to remove the background

color of the cells. Next, the roots were transferred into 1% HCl solution and held in Trypan

Blue solution before being stored in clear glycerol (Table 1). Finally, the roots were mounted

on microscope slides in polyvinyl-lacto-glycerol solution (10 ml/l water, 10 ml/l lactic acid, 1

ml/l glycerol, and 1.66 mg/l polyvinyl alcohol).

A modified gridline intersect method was applied for AMF quantification [61]. There was a

fine crosshair pre-scored on the ocular, and intersections of root and the vertical crosshairs

were made by vertically moving the slides. When the vertical hair intersected a root, AMF

structure (arbuscule, vesicle, or hypha) that was intersected by the vertical hair was recorded.

Observations were categorized into eight groups: hypha (H); arbuscule (A); vesicle (V); hypha

+arbuscule (HA); hypha+vesicle (HV); arbuscule+vesicle (AV); hypha+arbuscule+vesicle

(HAV); and no arbuscules, vesicles, or hyphae (negative, N). A total of 100 intersections were

Table 1. Detailed staining protocol for eight plant species.

Staining solutions

Plant species KOH H2O2+NH3
1 1% HCl Trypan Blue2

C. rotundifolia 60 min in 2.5% KOH at 80˚C 40 min 30 min 60 min at 80˚C

L. corniculatus 60 min in 2.5% KOH at 80˚C None 30 min 45 min at 95˚C

T. repens 60 min in 2.5% KOH at 80˚C None 30 min 90 min at 90˚C

G. sanguineum 30 min in 2.5% KOH at 121˚C None 30 min 75 min at 90˚C

F. vesca 48 h in 1.25% KOH at RT3 None 60 min 60 min at 80˚C

V. tricolor 60 min in 2.5% KOH at 80˚C None 30 min 75 min at 95˚C

T. serpyllum 20 min in 2.5% KOH at 90˚C None 60 min 90 min at 80˚C

A. dioica 48 h in 2.5% KOH at RT3 30 min 90 min 90 min at 90˚C

1 1.5% hydrogen peroxide containing 5 ml/l ammonia.
2 Lactic acid containing 63 ml/l glycerol, 63 ml/l water, and 0.02% Trypan Blue.
3 Room temperature.

https://doi.org/10.1371/journal.pone.0209432.t001
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analyzed for each slide. For instance, when calculating arbuscule rate, observations of A, HA,

AV, and HAV categories were summed and divided by 100. Three plants from each species

were analyzed per treatment, and data are presented as the mean ± SE.

Detection of B. amyloliquefaciens in soil samples

The primer pair BaG3F (5´-GTCGACCACTCTTGACGTTACGGTT-3´) and BaG4R (5´-CG
ATCACTTCAAGATCGGCCACAG-3´), which amplifies a 94-bp fragment from gyrB was used

to identify and quantify B. amyloliquefaciens in soil samples. Soil DNA extraction was carried

out with the PowerSoil DNA Extraction Kit (MO BIO, Carlsbad, CA, USA). Genomic DNA

from the Rhizocell powder was extracted with the DNeasy Plant Mini Kit (QIAGEN, Hilden,

Germany). DNA concentrations were measured with a Nanodrop (Thermo Fisher, Waltham,

MA, USA). PCR was carried out to amplify the target fragment from both soil DNA samples

and Rhizocell DNA samples. The PCR products were sent to the Haartman Institute (Helsinki,

Finland) for sequencing to verify the Bacillus species as the one in the Rhizocell product.

Before quantitative PCR (qPCR), soil DNA samples were diluted to 5 ng/μl, and Rhizocell

DNA was diluted with Milli-Q water at ratios of 1:1, 1:10, 1:100, 1:1000, and 1:10000. The Rhi-

zocell DNA dilutions were used to produce a standard curve and calculate amplification effi-

ciency for each qPCR run. qPCR reactions were run with the following program: 5 min at

95˚C; 45 cycles of 10 s at 95˚C, 10 s at 62˚C, and 10 s at 72˚C; and 5 min at 72˚C. B. amylolique-
faciens population densities from soil samples were calculated according to the standard curve

equation [62]

Population density of Bacillus amyloliquefaciens ¼
10ðCt� mÞ=� slope � n

wt

where “Ct” is the cycle threshold value from the qPCR; “slope” and “m” are the slope value and

intercept value of the standard curve, respectively; “wt” is the weight of the soil from which the

DNA was extracted; and “n” is the dilution ratio of each soil DNA sample.

Statistical analysis

Mean values for the plant shoot dry weight, photosynthetic efficiency, and AMF colonization

rate were compared using least significant difference analysis (LSD0.05,% confidence). Levels of

significance for the treatments, host plant species, and their interactions were calculated by

analysis of variance (ANOVA) using the SPSS software package (IBM SPSS Statistics 25,

Armonk, NY, USA).

Results

R. irregularis is enhanced in R+B treatments

Eight selected plant species were inoculated with R. irregularis or B. amyloliquefaciens, were

co-inoculated with both microbes, or were untreated as controls. Two repeated NaPPI experi-

ments were conducted to study the effect of colonization on host plants. In the first experi-

ment, AMF structures were not detected in plants from any of the four treatments. In the

second experiment, hyphae of AMF were detected in five of eight plants from treatment R,

whereas arbuscules and vesicles were rare or absent in all tested plants. In the R+B treatment,

AMF structures such as arbuscules and hyphae were observed in all eight plant species (Fig 1)

and vesicles were observed in all tested plants except C. rotundifolia. Even though hyphae and

arbuscules were detected in roots of C. rotundifolia, the colonization rate was low (3% and 1%,

respectively), and no vesicles were observed (Table 2). According to the LSD0.05 test,
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colonization by the specific fungal structures was significantly higher with the R+B treatment

than with R alone (P< 0.05; Table 2).

According to the AMF colonization response to co-inoculation with both microbes, the

plant species could be divided into three groups: 1) plants that were not active R. irregularis
host plants, regardless of the presence of B. amyloliquefaciens in the soil (C. rotundifolia); 2)

plants that were R. irregularis host plants only when B. amyloliquefaciens was co-inoculated (L.

corniculatus and T. repens); and 3) plants that were R. irregularis host plants when inoculated

alone but became more efficiently colonized by R. irregularis when B. amyloliquefaciens was

co-inoculated (G. sanguineum, F. vesca, V. tricolor, T. serpyllum, and A. dioica).

Fig 1. Microscopic images of AMF structures in roots of eight plants co-inoculated with R. irregularis and B.

amyloliquefaciens from the second experiment. (a−h) Images from C. rotundifolia (a), L. corniculatus (b), T. repens
(c), G. sanguineum (d), F. vesca (e), V. tricolor (f), T. serpyllum (g), and A. dioica (h). Scale bars represent 50 μm. A

black arrow, a + symbol, and a star indicate a hypha, vesicle, and arbuscule, respectively.

https://doi.org/10.1371/journal.pone.0209432.g001
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The rates of AMF structures in roots followed the pattern hyphae> arbuscules > vesicles

in all the plant species, i.e., hyphae were the most prevalent AMF structure (Table 2).

B. amyloliquefaciens colonized all tested plant species

B. amyloliquefaciens was detected in varying amounts in the soil adhering to roots in nearly all

plants inoculated with the bacteria. Extraction of the DNA from the soil and sequencing of the

soil DNA confirmed that the gyrB sequence isolated from soil DNA matched that of the bacte-

ria in the Rhizocell product. B. amyloliquefaciens was not detected by qPCR in the soil of non-

treated controls nor in soil from R treatment. According to LSD0.05 analysis in both experi-

ments, no statistically significant difference (i.e., P < 0.05) in B. amyloliquefaciens population

density was detected between the treatments B and R+B (Table 3).

Shoot weight of the plants

Differences in the plant shoot weight were studied in the two experiments by analyzing the fold

change of the treated plants (R, B, and R+B) compared with untreated control plants. Plants

were placed in two groups, namely those with consistent results (Fig 2) and those with less

repeatable results (S1 Fig) obtained in the NaPPI experiments. The shoot weight of the four

Table 2. Colonization by AMF of roots of eight plant species following inoculation with R. irregularis and co-inoculation with R. irregularis and B. amyloliquefa-
ciens from the second experiment.a.

Plant species Hyphae (%) Arbuscules (%) Vesicles (%)

R R+B R R+B R R+B

C. rotundifolia 0 3.0 ± 1.0 0 1.0 ± 0.6 0 0

L. corniculatus 0 40.0 ± 3.6 0 30.7 ± 2.7 0 11.0 ± 1.5

T. repens 0 65.7 ± 2.2 0 58.0 ± 3.2 0 21.3 ± 1.2

G. sanguineum 3.0 ± 2.1 48.0 ± 2.5�� 0 38.3 ± 2.6 0 8.7 ± 1.9

F. vesca 6.7 ± 3.4 95.0 ± 2.0�� 2.7 ± 1.5 82.7 ± 3.2�� 0 14.0 ± 2.1

V. tricolor 17.7 ± 3.2 46.0 ± 1.0�� 11.7 ± 2.3 29.7 ± 4.2� 0 1.3 ± 0.9

T. serpyllum 36.7 ± 2.3 87.7 ± 1.2�� 18.7 ± 0.9 47.0 ± 7.0� 2.0 ± 0.6 8.0 ± 2.0�

A. dioica 46.3 ± 1.2 82.0 ± 1.2�� 13.3 ± 1.5 63.3 ± 2.3�� 7.3 ± 0.7 14.0 ± 1.0��

a Differences in the colonization rate of roots between the treatments R and R+B were tested by LSD0.05

�P < 0.05

��P < 0.01.

https://doi.org/10.1371/journal.pone.0209432.t002

Table 3. Content of B. amyloliquefaciens in the soil adhering to roots in different plant species following different treatments, as measured by qPCR.

Plant species

C. rotundifolia L. corniculatus T. repens G. sanguineum F. vesca V. tricolor T. serpyllum A. dioica

Treatment B R+B B R+B B R+B B R+B B R+B B R+B B R+B B R+B

Exp. 1

(ng/g)

1.5 3.6 2.0 117.0 1.7 1.6 4.8 126.4 117.4 15.5 1.5 17.8 1.7 0.5 5.8 20.4

10.0 0 16.3 48.6 2.4 15.6 0 94.3 2.7 1.8 35.2 199.0 2.4 0.3 0.4 90

1.4 0 1.4 3.5 0 0.5 0 0.5 2.6 0 3.2 3.2 1.7 2.8 0 41.9

P = 0.373 P = 0.210 P = 0.408 P = 0.129 P = 0.414 P = 0.401 P = 0.430 P = 0.09

Exp. 2

(ng/g)

3.0 16.2 16.9 3.0 12.3 6.0 10.9 3.8 1.4 8.7 4.5 3.3 11.1 1.1 42.8 5.9

0.9 1.4 7.4 6.2 19.3 3.4 1.0 5.6 2.9 3.3 2.5 1.8 16.6 1.5 1.3 0.7

3.9 2.3 10.3 3.8 2.5 2.2 2.6 2.2 0 0.8 8.8 0 0.3 0.7 15.1 2.5

P = 0.454 P = 0.374 P = 0.208 P = 0.779 P = 0.314 P = 0.163 P = 0.161 P = 0.246

No significant differences were observed between the treatments B and R+B (P < 0.05; LSD0.05).

https://doi.org/10.1371/journal.pone.0209432.t003
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species with consistent results was significantly lower in untreated control plants and in R plants

relative to B and R+B plants. For C. rotundifolia and T. serpyllum, no difference was detected

between B and R+B, whereas for T. repens and F. vesca, plants in the R+B treatment group grew

significantly larger than those in the B treatment group in at least one of the experiments.

According to an ANOVA, there was a statistically significant interaction between the host

plant species and treatment for shoot weight for all plant species (S1 Table, S2 Table).

Chlorophyll fluorescence

The four plant species that showed a consistent effect for shoot weight (Fig 2) also showed

reproducible patterns in photosynthetic efficiency in the two NaPPI experiments (Fig 3). For

C. rotundifolia and T. serpyllum, inoculation with the microbes showed little influence on pho-

tosynthetic efficiency. For T. repens and F. vesca, the Fv/Fm ratio was lowest in untreated con-

trol plants (for T. repens, the Fv/Fm ratio in the R treatment group and in the control was too

low to be detected) and was higher after B and R+B treatments. Moreover, R+B treatment in

T. repens and F. vesca produced the highest Fv/Fm ratio in at least one of the experiments (Fig

3). The Fv/Fm ratios for the four plant species that showed less-consistent results in the two

experiments are presented in S2 Fig and S4 Table.

The host plant species, treatment, and their interaction had significant effects on photosyn-

thetic efficiency in all plant species (S3 Table, S4 Table).

Fig 2. Fold change in shoot weight of four plant species whose results were consistent across the two NaPPI experiments. Bars (mean ± SE) represent fold changes

in shoot weight of R, B, and R+B treated plants as compared with untreated control plants (Ctl). Graphs in the upper and lower row are from the first (1) and second

(2) NaPPI experiment, respectively. (a−d) Data from C. rotundifolia (a), T. serpyllum (b), F. vesca (c), and T. repens (d). Different lowercase letters above the bars

indicate statistical differences (LSD0.05) between the treatments at P< 0.05.

https://doi.org/10.1371/journal.pone.0209432.g002
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Discussion

Mycorrhiza helper bacterium (MHB) is a generic name for bacteria that can stimulate the for-

mation of a mycorrhizal association with host plants [63]. In our study, the colonization rate

of R. irregularis among the eight tested plant species was improved by co-inoculation with B.

amyloliquefaciens. Moreover, for some plant species (L. corniculatus and T. repens), successful

colonization by R. irregularis could only happen when B. amyloliquefaciens was co-inoculated.

We can infer that AMF colonization in some plant species was strongly dependent on the pres-

ence of a MHB (B. amyloliquefaciens in this case).

Our findings are consistent with the studies of Yusran et al. [64], which indicated that dif-

ferent species of MHB promote mycorrhization to different levels and that co-inoculation with

a MHB and an AMF has a positive impact on biomass and phytopathogen control in tomato

plants. Our results show that the colonization-promoting effects of B. amyloliquefaciens on R.

irregularis can occur across a broad range of host plants suggesting that such a promoting

effect is fungus specific, rather than host plant specific [65,66]. Many MHB species have been

identified, and it is predicted that more are likely to be discovered [44,67]. Finding such benefi-

cial combinations would be promising for sustainable and cost-effective urban greening, and

potential combinations should be extensively tested for their reliability and consistency under

field conditions before wider exploitation.

Fig 3. Quenching analysis of chlorophyll activities in leaves of plant species whose results were consistent in the two NaPPI experiments. Bars (mean ± SE)

represent the Fv/Fm ratio of chlorophyll fluorescence for treated and untreated plants. Bar charts in the upper and lower row are from the first and second NaPPI

experiment, respectively. Different lowercase letters above the bars indicate statistical differences (LSD0.05) between the treatments. Missing data indicate that the

Fv/Fm ratio was too low to be detected.

https://doi.org/10.1371/journal.pone.0209432.g003
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The exact processes and compounds of microbes that are involved in stimulation of AMF

colonization by MHB remain mostly unknown [68,69]. It does not necessarily require physical

attachment but could happen through chemical signaling [63]. One possible mechanism

behind these effects could be the release of gaseous volatiles, such as 2-methyl isoburneol, geos-

min, and CO2, by the MHB that stimulates the growth of AMF. In addition to gaseous chemi-

cals, other active metabolites produced by a MHB include vitamins, amino acids, and growth

substances, any or all of which might directly stimulate the growth of an AMF [63,70].

The present study indicated that co-inoculation with R. irregularis and B. amyloliquefaciens
led to increased plant biomass of at least T. repens and F. vesca in repeated experiments. A sim-

ilar synergistic effect has been reported in a study that combined four Glomus species, namely

G. aggregatum (Schenck and Smith), G. fasciculatum (Gerd & Trappe), G. intraradices, and G.

mosseae (Nicolson & Gerd), with B. subtilis on Pelargonium graveolens (L’Her. ex Aiton). All

four combinations (each of the four Glomus species inoculated separately with B. subtilis)
resulted in synergistic effects to various degrees, as measured by increases in the plant dry

weight of 25.7% to 74.3% as compared with that of control plants and of 7.8% to 14.5% as com-

pared with inoculation with a single Glomus species [71].

We found that AMF colonization at a low level may not have any promoting effects on host

plants. It is especially true if the internal hyphae are the only AMF structure present in the

roots. However, little scientific data are available concerning the threshold level of arbuscules

and vesicles needed for a significant promoting effect, and further studies on this topic are

needed. C. rotundifolia hardly differed in biomass production between the two treatments R

and R+B. A possible explanation could be that C. rotundifolia is highly tolerant to drought, soil

pH, environmental variations, frost, and strong wind, so that it does not need symbiosis for

further growth-promoting effects [72]. In contrast, Nuortila et al. [73] reported that, instead of

increasing plant biomass, AMF colonization can significantly decrease the plant biomass of C.

rotundifolia by 33% and can reduce flowers by 66%. Furthermore, in some specific AMF−host

plant combinations, AMF can act as a “hitchhiker” that profits from the mycorrhizal-host net-

work without returning benefits back to the host [74,75]. In the present study, T. serpyllum
reached high levels of AMF colonization after the R+B treatment in the second experiment,

but no significant difference in biomass production between R+B and B plants was observed.

Similar results have been obtained using Thymus vulgaris (L.) as a host plant and G. mosseae as

the AMF inoculant: a higher AMF colonization rate after AMF treatment did not increase

plant biomass [76]. The phenomenon depends on the plant-AMF combinations, water avail-

ability, and soil types [77].

Enhanced photosynthetic efficiency is another benefit that AMF and plant growth−-

promoting rhizobacteria (PGPR) provide to some host plants, such as T. repens and F. vesca in

the present study. A single inoculation with AMF or PGPR may significantly promote photo-

synthetic efficiency under suboptimal conditions such as high salinity and nutrient deficiency

in the soil. For example, co-colonization by Glomus and Bacillus species enhances the photo-

synthetic efficiency of lettuce plants, compared with colonization by either of the two

microbes. The extent of the synergistic effect is greatly dependent on the Glomus and Bacillus
species combination [70].

Quantification of B. amyloliquefaciens revealed varying population densities between repli-

cates in our study. Trevors et al. [78] also found large variation between replicates in their

study of PGPR in the soil. It appears challenging to correlate PGPR population density with

effects that promote plant growth [79], but the information would be useful, as beyond a cer-

tain PGPR population density no further enhancement may occur [79–82]. This scenario also

seems possible in our study, as higher population densities of B. amyloliquefaciens did not lead

to a higher biomass production or photosynthetic efficiency.
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Our results suggest that neither a positive nor negative interaction was found between AMF

colonization rate and the abundance of B. amyloliquefaciens in the soil in any of the eight

tested plant species. These findings are supported by Kostoula et al. [83], who got similar

results with Crithmummaritimum (L.) as a host plant and G. intraradices and B. amyloliquefa-
ciens as inoculants. They found no significant effect of G. intraradices colonization on the pop-

ulation density of B. amyloliquefaciens in the soil. Likewise, Alam et al. [71] found no effect of

four Glomus species on B. subtilis population density.

Interruptions in the NaPPI system during the first experiment made growth conditions

unstable, which probably explains why the shoot weight and photosynthetic efficiency in half

of the plant species were not reproducible across the two NaPPI experiments. Still, the other

four plant species exhibited relatively consistent patterns in shoot weight and photosynthetic

efficiency, suggesting that the plant species studied show different sensitivities to the stability

of their growth environment.

In conclusion, for host plants T. repens and F. vesca, B. amyloliquefaciens could act as a MHB to

facilitate colonization by R. irregularis, and dual inoculation with B. amyloliquefaciens and R. irregu-
laris should result in higher shoot weight and photosynthetic efficiency. Such mycorrhiza-helping

effects and dual-inoculation growth-promoting effects in other test plants were more conditional

and dependent on the environment. Further field experiments to test these effects of co-infection

on green roofs should focus on T. repens and F. vesca, as they showed consistent and promising

results, and they are likely to produce better growth than other plants under such conditions.
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Investigation: Long Xie, Jutta Kasurinen, Juhamatti Niemikapee.
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